Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.

نویسندگان

  • Song Hi Lee
  • Jayendran C Rasaiah
چکیده

Hydrogen (H(+)) and hydroxide (OH(-)) ions in aqueous solution have anomalously large diffusion coefficients, and the mobility of the H(+) ion is nearly twice that of the OH(-) ion. We describe molecular dynamics simulations of a dissociating model for liquid water based on scaling the interatomic potential for water developed by Ojamäe-Shavitt-Singer from ab initio studies at the MP2 level. We use the scaled model to study proton transfer that occurs in the transport of hydrogen and hydroxide ions in acidic and basic solutions containing 215 water molecules. The model supports the Eigen-Zundel-Eigen mechanism of proton transfer in acidic solutions and the transient hyper-coordination of the hydroxide ion in weakly basic solutions at room temperature. The free energy barriers for proton transport are low indicating significant proton delocalization accompanying proton transfer in acidic and basic solutions. The reorientation dynamics of the hydroxide ion suggests changes in the proportions of hyper-coordinated species with temperature. The mobilities of the hydrogen and hydroxide ions and their temperature dependence between 0 and 50 °C are in excellent agreement with experiment and the reasons for the large difference in the mobilities of the two ions are discussed. The model and methods described provide a novel approach to studies of liquid water, proton transfer, and acid-base reactions in aqueous solutions, channels, and interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton transfer and the diffusion of H+ and OH- ions along water wires.

Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they ...

متن کامل

The Effect of Hydrogen Bonding and π–π Stacking to Stabilization of 3D Networks of a New Proton Compound, (a-6-mpyH)(Hpyzd) H2O

A new proton transfer compound, formulated as (Hamp-6-pic)(Hpyzd) ∙H2O (1), has been synthesized from the reaction of pyrazine-2,3-dicarboxylic acid (H2pyzd)  and 2-amino-6-methyl pyridine (amp-6-pic), in 1:1 molar ratio. Extensive O−H×××O, N−H×××N and O−H×××O hydrogen bonds involving (Hamp-6-pic)+ cation, (Hpyzd)- anion and co-crystal water molecule٫ static electronic٫ and π…π stacking interac...

متن کامل

DFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes

DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...

متن کامل

Monte Carlo calculation of proton ranges in water phantom for therapeutic energies

Introduction: One crucial point when calculating the distribution of doses with ions is the uncertainty of the Bragg peak. The proton ranges in determined geometries like homogeneous phantoms and detector geometries can be calculated with a number of various parameterization models. Several different parameterizations of the range-energy relationship exist, with different level...

متن کامل

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 12  شماره 

صفحات  -

تاریخ انتشار 2011